CHEMICAL CONSTITUENTS OF THE NUDIBRANCH CHROMODORIS MARISLAE

Jill E. Hochlowski and D. John Faulkner

Scripps Institution of Oceanography (A-012) La Jolla, California 92093, U.S.A.

Abstract: The major metabolite of Chromodoris marislae, marislin (1a) was identified from spectral data and converted into the sponge metabolite pleraplysillin-2 (1b).

Nudibranchs are brightly-colored shell-less mollusks. Since they lack physical defences against predation, it has been assumed that the nudibranchs, like other opisthobranch mollusks,¹ employ a chemical defence mechanism.² The dorid nudibranch *Chromodoris marislae* Bertsch is colored white with bright orange spots.³ The animals were collected by hand (-8 m) at various locations in the western Gulf of California.

The dichloromethane-soluble material (4.0 mg/animal) from a methanolic extract of C. marislae was chromatographed on Florisil to obtain marislin (\underline{la} , 2.0 mg/animal) as the major metabolite. More polar fractions were rechromatographed by LC on μ -porasil to obtain four minor metabolites $\underline{2a}, \underline{b}$ and $\underline{3a}, \underline{b}$, isolated as two inseparable pairs of isomeric esters.

Marislin (<u>la</u>) was obtained as an optically-inactive oil having the molecular formula $C_{20}H_{24}O_4$ (328.1690). The IR spectrum contained an ester band at 1735 cm⁻¹ and a strong olefinic band at 1650 cm⁻¹. The ¹H NMR spectrum (Table 1) contained signals that could be assigned⁴ to the C_{15} acid portion of pleraplysillin-2 (<u>lb</u>).⁵ By analogy to model compounds,⁶ fifteen signals from the ¹³C NMR spectrum⁷ of marislin (<u>la</u>) were assigned to the acid portion of the molecule. The remaining five carbon signals at δ 96.3 (d), 105.2 (t), 105.6 (d), 152.7 (d) and 165.1 (s) were attributed to an acetal carbon, two carbons of an exocyclic methylene group and two carbons of an enol ether moiety. The ¹H NMR signals for the C_r acetal portion of marislin (<u>la</u>) were

271

assigned as the result of careful decoupling experiments. The band at 258 nm (ϵ 11,650) in the UV spectrum was attributed to the diene in the C₅ acetal portion of the molecule.

The structures of marislin (<u>1a</u>) and pleraplysillin-2 (<u>1b</u>) are formally related by a [3,3] sigmatropic rearrangement. This rearrangement occurred very slowly during routine handling but treatment of marislin (<u>1a</u>) with boron trifluoride etherate in anhydrous ether caused complete rearrangement to pleraplysillin-2 (<u>1b</u>). Pyrolysis of marislin at 290^oC for 4 min. gave a 1:1:1 mixture of marislin (<u>1a</u>), pleraplysillin-2 (<u>1b</u>) and the acid (<u>1</u>, R = H). The 1:1 mixture of la and lb could not be separated but the ¹H NMR spectrum served as an excellent model for those of the minor metabolite mixtures.

The mixture⁸ of ketones (2a,b, 0.08 mg/animal) had the molecular formula $C_{20}H_{28}O_4$. An IR band at 1725 cm⁻¹ was attributed to both ester and ketone groups. The ¹H NMR spectrum (Table 1) contained small (0.5 H) signals due to the 1:1 mixture of two C_5 units and larger signals assigned to a common C_{15} acid portion. The signal at δ 0.89 (d, 6 H, J = 6 Hz) coupled to a signal at 2.15 (m, 1 H) required a terminal isopropyl group, while the signal at 3.02 (s, 2 H) was assigned to the C-8 methylene protons. We therefore proposed the structure 2 for the C_{15} acid portion of the ketone.

The mixture of lactones $(\underline{3a,b}, 0.06 \text{ mg/animal})$ had the molecular formula $C_{21}H_{26}O_6$. The IR bands at 1790 and 1720 cm⁻¹ suggested the presence of the α,β -unsaturated γ -lactone and α,β unsaturated ester groups. The ¹H NMR spectrum (Table 1) contained a methoxy signal at δ 3.18 (s, 3 H), a signal at 6.68 (bs, 1 H) due to the β -proton on an α,β -unsaturated lactone, coupled to a methyl signal at 1.93 (bs, 3 H), and an AB quartet at 2.54 (d, 1 H, J = 17 Hz) and 2.61 (d, 1 H, J = 17 Hz) due to the non-equivalent methylene protons at C-8. We proposed structure $\underline{3}$ for the C_{15} portion of the lactone. The γ -methoxy- α,β -unsaturated γ -lactone functionality may be formed by air-oxidation of the corresponding furan in methanolic solution. Thus, the mixture of lactones $\underline{3a}$ and $\underline{3b}$ was probably an artifact of isolation.

Chromodoris species are known to eat sponges. The close structural relationship between marislin (<u>la</u>) and pleraplysillin-2 (<u>lb</u>), a metabolite of the Mediterranean sponge *Pleraplysilla* spinifera, is therefore not surprising. It is remarkable, however, that the nudibranch should concentrate essentially only one metabolite, presumably a metabolite of an unidentified sponge.⁹ Acknowledgement: This research was supported by a grant from the National Science Foundation.

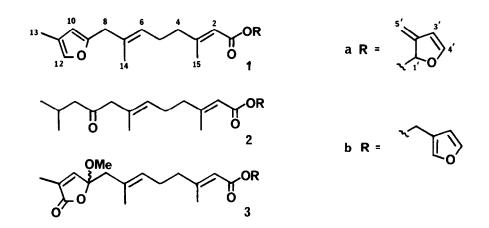


Table 1. ¹_H NMR Spectral Data (360 MHz, CDCl₃, δ) for Marislin (<u>1a</u>), Pleraplysillin-2 (<u>1b</u>) and the Minor Metabolites 2 and 3.

<u>H at C-#</u>	<u>la</u>	<u>1b</u>	<u>2a</u>	<u>2b</u>	<u>3a</u>	<u>3b</u>
2	5.72 (bs)	a 5.69 (bs) ^b	5.73 (bs)	5.69 (bs)	5.73 (bs)	5.71 (bs)
4,5	≃ 2.2	(m, 4 H)	≃ 2.2	(m, 4 H)	≃ 2.2	(m, 4 H)
6	5.1	8 (t, $J = 7$ Hz)	5.20	(t, J = 7 Hz)	5.17	(t, J = 7 Hz)
8	3.2	2 (s, 2 H)	3.02	(s, 2 H)	2.54	(d, J = 17 Hz) (d, J = 17 Hz)
10	5.8	6 (s)	2.2	(m, 2 H)	6.68	(bs)
11	-		2.15	(m)	-	
12	7.0	6 (s)	1		-	
13	1.9	8 (s, 3 H)	0.89	(d, 6 H, J = 6)	^{6 Hz)} 1.93	(bs, 3 H)
14	1.6	0 (bs, 3 H)	1.61	(bs, 3 H)	1,65	(bs, 3 H)
15	2.2	0 (bs, 3 H)	2.20	(bs, 3 H)	2.16	(bs, 3 H)
1'	6.88 (s)	7.49 (s)	6.88 (s)	7.49 (s)	6.88 (s)	7.48 (s)
3'	5.68 (s)	6.45 (s)	5.69 (s)	6.44 (s)	5.69 (s)	6.44 (s)
4'	6.77 (s)	7.41 (s)	6.77 (s)	7.41 (s)	6.77 (s)	7.40 (s)
5'	5.05 (s) 5.13 (s)	5.01 (s, 2 H)	5.03 (s) 5.15 (s)	5.01 (s, 2 H	H) 5.03 (s) 5.15 (s)	5.01 (s, 2 H)
-OMe					3.18	(s, 3 H)

All signals due to one proton unless otherwise designated. ^bSee reference 4.

REFERENCES AND NOTES

- D. J. Faulkner and C. Ireland in "Marine Natural Products Chemistry" (D. J. Faulkner and W. H. Fenical, eds.) Plenum Press, New York, 1977, p. 23-34. W. Fenical, H. L. Sleeper, V. J. Paul, M. O. Stallard, and H. H. Sun, Pure & Appl. Chem. <u>51</u>, 1865 (1979).
- 2. M. R. Hagadone, B. J. Burreson, P. J. Scheuer, J. S. Finer, and J. Clardy, Helv. Chim. Acta 62, 2484 (1979).
- 3. H. Bertsch, A. J. Ferreira, W. M. Farmer and T. L. Hayes, *Veliger* 15, 287 (1973). Our sample was identified by J. R. Lance.
- 4. There is a systematic error between the 1 H NMR chemical shift values reported for pleraplysillin-2 (1b) in CCl₄ solution at 100 MHz⁵ and those that we measured in CDCl₃ solution at 360 MHz (Table 1).
- 5. G. Cimino, S. De Stefano, and L. Minale, Experientia 30, 846 (1974).
- J. C. Coll, N. Liyanage, G. J. Stokie, I. Van Altena, J. N. E. Nemorin, S. Sternhell, and R. Kazlauskas, Aust. J. Chem. <u>31</u>, 157 (1978) and Insect juvenile hormone from: E. Wenkert, B. L. Buckwalter, I. R. Burfitt, M. J. Gasič, H. E. Gottlieb, E. W. Hagaman, F. M. Schell, and P. M. Wouklich, in "Topics in Carbon-13 NMR Spectroscopy" (G. C. Levy, ed.) Wiley, New York, 1976 p. 93.
- We did not attempt any heroic methods for separation of the mixtures due to lack of material (3-4 mg of each mixture). For the same reason, we were unable to record optical rotations or ¹³ C NMR spectra for the minor metabolites <u>2</u> and <u>3</u>.
- 9. We have not discovered a source of marisilin (1a) or pleraplysillin-2 (1b) among more than twenty common sponges of the Gulf of California.

(Received in USA 26 August 1980)